Final Project - Instruction Pipeline Simulation

Michael Del Rose
Technical Paper — Vetronics (In-House)

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
02 DEC 2000 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Final Project - Instruction Pipeline Simulation 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Michael Del Rose 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
US Army RDECOM-TARDEC 6501 E 11 MileRd Warren, M| NUMBER
48397-5000 14203
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'SACRONYM(S)
TACOM/TARDEC
11. SPONSOR/MONITOR' S REPORT
NUMBER(S)
14203
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF
OF ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 18
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.0 Introduction
Writing a simulation of an instruction pipeline has given me a good idea of what goes into the logic of it.

The simulation I wrote goes through 2 types of pipelines, a 4 stage pipeline and a 5 stage pipeline. I choose
to write the logic of the pipeline in Visual Basic, but I use access to keep the simulation graphical.

At the beginning of this project [was not familiar with Visual Basic and only moderately familiar with
Access. [now feel that I can set up most types of simple databases with Access and Visual Basic.

2.0 Using the Instruction Pipeline Simulation
The simulation is modeled after figure 2.1.

Stack for
IR
> IR » decoder Memory
]
v
DR AC
v A4
Arithmetic
Unit
Figure 2.1

It is a load store architecture where only LD and ST commands can access the memory. There are two
memory locations (M1 and M2). There are also two registers (AC and DR). The accumulator register
(AC) is the only way data can get into or out of the ALU. The other register is called the data register

(DR).

The simulation starts off with an introductory screen explaining the available commands (see figure 2.2).
These commands are MOV (move register to register), MVI (move immediate value to register), LD (load
memory to register), ST (store register contents into memory), ADD (add two registers), SUB (Subtract
two registers), BRA (branch unconditionally), and BZ (branch if AC = 0).

The “Begin” button on figure 2.2 will take you to the form for entering the program (see figure 2.3). The
“Exit” button will close the simulation.

Notice that in figure 2.3 you have columns where you enter in your program. The columns represent the
items that are important in the simulated assembly language. The “Location” column is used to distinguish
a part of the program that you might want to jump to. The “Command” column is the command that you
want to execute. The “Operand]” and “Operand2” columns are where you put in the operands that go with

the command.

nstruction Pipehine

femintiol Form

; ption. .~ © 1 ple | ~_HDL.
Move a register value to another register MOVDRAC DR=AC

Move immediate value into a register. MVIAC 3 AC=3

Load contents of memary into AC register. LD M1 AC = M1

Store contents of AC into memory ST M2 M2=AC

Add registers DR and AC. Sum goes into AC. ADD AC=AC +DR

Subtract DR fram AC. Put value into AC suB AC=AC-DR

Branchto a logation. . BRA A Goto location A
Branch if AC =0 ta a location BZ 8 Goto Jocation Bif AC =0

A Instruction Pipel;

d] Operandt |
AC
DOR AC
AC 2

M1
DR
M1

[TITITI 1+

BN REUEE

Figure 2.3

For example. suppose you want to enter in the following assembly language program:
MVI AC,9
BRA A
LD Ml
ST M2
A: MOV DR, AC
ADD

To execute this you separate the pieces of information from the program that match the columns on the
entrv screen. The program would be divided up like this:

Location { Command | Operand1 | Operand2

MVI AC 9
BRA A
LD M1
ST M2

A MOV DR AC
ADD

Table 2.1

After the program is entered in, you have the option of running a 4 stage instruction pipeline or a 5 stage
instruction pipeline. Click the desired option button to the right of the program. When complete hit the
“Submit” button to run your pipeline. If you choose a 5 stage pipeline then the “Submit” button will take
you to the screen shown in figure 2.4. If you have chosen a 4 stage pipeline then it will take you to the
screen in figure 2.5. By hitting the “Back” button you will return to the introductory screen.

[al2LX]

A Instruclion Pipeline

| e fow-

e

-0

ﬂﬂmﬁmﬂmnlg

IEEEEREREECE:

Figure 2.4

qryPipe

DO OB R WN —

u

FITTITTTITTI

Ot e WK —

DDRDOND W W =

Figure 2.5

Looking at either figure 2.4 or 2.5, you’ll notice that the program that you wrote is on the left of the screen
and the pipeline is to the right. The 5 stage pipeline has the following categories: I-Fetch, Decode, D-
Fetch, Execute, and D-Store. The 4 stage pipeline combines the I-Fetch and Decode into one.

Commands require different clock times to execute. In this simulation, the commands clock times are 1 for -
all stages of both pipes for all commands except for the LD and ST commands. The LD command takes 3
clocks in the D-Fetch stage and 1 in the other stages. The ST command takes 3 clocks in the D-Store stage
and 1 in the other stages. Each command is assumed to pass through each of the stages regardless if it needs
to go to that stage or not. For example, the ADD command must pass through all stages even though it
does not store or retrieve data from memory (stages D-Store and D-Fetch, respectively).

The “Back” button returns you to the screen where you enter in the program and select the stage pipeline
vou want. The “Preview Report” button takes you to the screen that lets you preview the report for
printing. The format of the report is different then the screens shown in figure 2.4 and 2.5. It is condensed
down to be able to fit on one page (Landscape). To print the instruction pipeline out, hit the “Preview
Report™ button and then select print (the printer button at the top of the window).

3.0 Testing the Instruction Pipeline Simulation.

To test this simulation, three programs where written to encompass all the possible errors in the logic. An
in-depth test on the simulation functionality was not run because the logic is the important part of this and
not the functionality. However, I have tried to make the simulation as functionally adequate as possible
without running the rigorous tests.

The first test program can be seen in Appendix A. Page 1 of Appendix A shows the 4 and 5 stage pipelines
for the program written beneath it. Page 2 and 3 of Appendix A shows the output of the simulation for a 5
stage and a 4 stage pipeline. These two should match up (and they do). This test program was designed to
test the MVI, SUB, LD, and ST, commands along with a condition branch jumping forward. Notice that
line 4 and line 6 of the program clears the pipeline whether there is a jump or not. This is designed so that

a look ahead logic subroutine will not have to be implemented. The [-Fetch of the next commands
(commands 5 and 8) will not be able to start until the branch (BZ in this case) has completed executing.

Test program 2 is found in Appendix B. Page 1 is the pipeline and the program. Page 2 and 3 are the
simulated pipelines. This program tests out the conditional jump backwards and the ST/LD commands
close to each other. When the simulation receives a store command, it decides that a LD command cannot
fetch data from memory (D-Fetch) until the final stage of the storing (D-Store) is executing. This is
another cautionary step in case the LD command is loading something that is not completely stored.
Instruction 7 shows this by holding the LD command in the D-Store pipe for 5 clocks (see the 4 stage
pipeline in appendix B). At clock 10 the ST command (instruction 5) is in the last phase of the D-Store
stage. This is when the D-Fetch command can start to execute (instruction 7). It takes 3 clocks to complete
the D-Fetch stage so it will be in that stage for 5 clocks.

Test program 2 also checks to make sure that the program can branch backwards as well as forward. This
is shown in instruct 10 being executed twice. Once jumping back to instruction 7 and the second time
continuing on to instruction 11. Notice that in both the computer simulated pipelines and the typed in
pipelines that it only goes up to 30 clocks. This is to keep the program simple and to stop incase there is an
infinite loop. In the 5 stage pipeline, there wasn’t enough room to show the D-Store stage of the ST
command (instruction 11) at the end of the program. There is also a limitation to the number of
instructions that a person can execute; it is 20. You can type in more than 20 instructions, however, the
simulation will only execute the first 20.

Test program 3 is the simplest test program of them all. It’s only function is to test the BRA command. In
the last two programs a BZ command was used. Since the BRA and BZ commands execute exactly the
same (if BZ is TRUE) there didn’t seem a need to extensively test it. Only a test of the main functionality
of the command needs to be checked. Appendix C holds the pipeline, program and the two computer
simulated printouts of test program 3. Again, instruction 2 clears the pipe and the next instruction cannot
be fetched until the execution of the command is complete.

4.0 Final Discussion

This simulated pipeline is a simple model of an architecture that probably doesn’t have much use in real
applications. However, the idea of how a pipeline works and the complexity involved in designing an
instruction pipeline was realized from this exercise. [tried to encompass all possible pipeline caveats into
the three test programs. However, the program functionality was not completely tested for run time errors.
I believe the purpose of this assignment was to evaluate the complexities of an instruction pipeline.

The Appendixes A, B and C hold the test programs and their pipelines. Appendix D holds the main logic
code for the pipelines. It may be a bit jumbled. This is due to the lack of knowledge that I have in
programming, but [believe it is followable. The reader should be mainly concerned with the modules
“readthru4” and “readthru5”. This is the main logic for a 4 stage and a 5 stage instruction pipeline.

I deviated a bit from my final proposal of this project. 1 originally planned on having a variable clock value
for each stage. I chose not to do this based on time. When I had first conceived the work involved in this
project, [didn’t intend on it taking the time that it did. Another change from my proposal was the stages
that were available. To me, a 4 and a 5 stage pipeline seemed to make more sense than a 1, 2, or 3 stage
pipeline. This is why I decided to do a 4 and 5 stage pipeline.

In the table section of the program, you will notice a “tbIProgl”, “tblProg2”, “tblProg3”, and “tblProgram”
tables. The simulation looks at the “tbIProgram™ table as its table to enter in code (or change code). the
other three programs refer to the test programs 1, 2 and 3 respectively. If you want to run the test
programs, you can either type them in or you can copy the respective table that holds the test program to
the “tblProgram” table (this is done by highlighting the test program table, say “tbIProg1”, and on the tool
bar at the top of the window hit Copy, under File, then hit Paste, also under File, and type the name
“thlProgram”. It will ask you to overwrite it and you hit the “Yes” button.)

Appendix D

Private Sub ¢cbSubmit_Click()
Const XSSTAGE = |
Const X4STAGE =2
Dim stDocName As String
Dim stDocName2 As String
Dim stLinkCriteria As String

DoCmd.SetWarnings False

{f Frame 14 Value = X3STAGE Then
stDocName2 = "qryDelPipe"
DoCmd.OpenQuery stDocName2, acNormal, acEdit
stDocName = "frmPipe"
Call readthru$
Else
stDocName2 = "qryDelPipe4"
DoCmd.OpenQuery stDocName2, acNormal, acEdit
stDocName = "frmPipe4"
Call readthrud
End If
DoCmd.Close
DoCmd.OpenForm stDocName, , , stLinkCriteria
DoCmd.SetWarnings True

End Sub

Sub readthrus()
Dim db As Database
Dim thl As TableDef
" the table that holds the program
DDim tblProg As TableDef
Dim rstProg As Recordset
" the pipe table
Dim tblPipe As TableDef
Dim rstPipe As Recordset
"array of command line information
Dim locArray(l To 30) As String
Dim comArray(1l To 30) As String
Dim operlArray(l To 30) As Variant
Dim oper2Array(l To 30) As Variant
" variables need to keep track of
Dim AC As Integer ' accumulator register
Dim DR As Integer ' data register
Dim M1 As Integer ' memery location 1
Dim M2 As Integer ' memory location 2

" the stages of the pipe
Dim iFetch(l To 40) As Integer
Dim Decode(1 To 40) As Integer
Dim dFetch(1 To 40) As Integer
Dim Execute(] To 40) As Integer
Dim dStore(1 To 40) As Integer

‘the position that each stage is on
Dim poslF As Integer
Dim posDC As Integer
Dim posDF As Integer
Dim posEX As Integer
Dim posDS As Integer
Dim pgmCnt As Integer

" a holder for the current command
Dim currentCmd As String

"used to exit looking at program loop
Dim FinProg As Boolean

"used to tell when branching is allowed
Dim Branch As Boolean

" dummy variables
Dim finL.oop As Boolean
Dim 1 As Integer
Dim message As String
Dim DEBUG_PO As Integer

"titialize all need variables
DEBUG_PO =0 'for debugging using print out statements
Set db = CurrentDb
Set tblProg = db. TableDefs("tblProgram™)
Set rstProg = thIProg.OpenRecordset(dbOpenTable)
' Set rstProg = thlProg. OpenRecordset(dbOpenDynaset)
AC=0
DR=0
M1 =0
M2=0
poslF = 1
pasDC =2
posDF =3
posEX =4
posDS =35
On Error Resume Next
Fori=1To 30
iFetch(i)=0
Decode(i) =0
dFetch(i) =0
Execute(1) =0
dStore(i) =0
:ocArray(i) = Null
comArray(i) = Null
operl Array(i) = Null
oper2Array(i) = Nulil
Next
On Error GoTo 0
FinProg = False

' check file to make sure it is not empty
rstProg. MoveFirst
If rstProg. EOF Then
MsgBox "EOF error on tblProgram”
Exit Sub
End If
pemCnt =1
' put commands in command array
Do While Not rstProg. EOF
On Error Resume Next
locArray(pgmCnt) = rstProg.Fields("Location")
comArray(pgmCnt) = rstProg.Fields("Command")
oper1 Array(pgmCnt) = rstProg.Fields("Operand1")
oper2 Array(pgmCnt) = rstProg.Fields("Operand2")
On Error GoTo 0
pemCnt = pgmCnt + | .
rstProg. MoveNext .
" message = "The assignment loop - comArray: " & comArray(pgmCnt) & Chr(13) _
& "Location: " & locArray(pgmCnt) & Chr(13) & "Operandl: " &
operl Array(pgmCnt)
MsgBox (message)
Loop

¢

" loop through commands until end of program or 30 clks have ellapsed
pemCnt = |
Do While Not FinProg
' message = "The programming loop - comArray: " & comArray{pgmCnt)
' MsgBox (message)
currentCmd = comArray(pgmCnt)
[f DEBUG_PO =1 Then
Call PrintOut2("CurrentCmd:", currentCmd)
End If
Select Case currentCmd
Case "ADD"

iFetch(posiF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posIF = posDC
posDC = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
pemCnt = pgmCnt + |
It DEBUG_PO =1 Then

Call PrintOut4("ADD - AC:", AC, "DR:", DR)
End If
AC=AC+ DR

Case "SUB"

iFetch(poslF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posIF = posDC
posDC = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1

gmCnt = pgmCnt + |
It DEBUG_PO =1 Then

Call PrintOut4("SUB -~ AC:", AC, "DR:", DR)
End If
AC=AC-DR

Case "MVI"

iFetch(posIF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posIF = posDC
posDC = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
I DEBUG_PO = I Then

Call PrintOutd("MVI - Oper1:", oper] Array(pgmCnt), "Oper2:", oper2Array(pgmCnt))
End If
If opert Array(pgmCnt) = "AC" Then

AC = oper2 Array(pgmCnt)
Elself operl Array(pgmCnt) = "DR" Then

DR = oper2 Array(pgmCnt)
End If
If DEBUG_PO =1 Then

Call PrintOutd("AC:", AC, "DR:", DR)

End If
gmCnt = pgmCnt + 1
Case "MOV"

iFetch(poslF) = pgmCnt

Decode(posDC) = pgmCnt

dFetch(posDF) = pgmCnt

Execute(posEX) = pgmCnt

dStore(posDS) = pgmCnt

posIF = posDC

posDC = posDF

posDF = posEX

posEX = posDS

posDS = posDS + |

[f operl Array(pgmCnt) = "DR" Then
DR =AC

Elself operl Array(pgmCnt) = "AC" Then
AC =DR

End If

[f DEBUG_PO =1 Then
Call PrintOutd("AC:", AC, "DR:", DR)
End If
pegmCnt = pgmCnt + 1
Case "LD"
iFetch(poslF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
dFetch(posDF + 1) = pgmCnt
dFetch(posDF + 2) = pgmCnt
Execute(posEX + 2) = pgmCnt
dStore(posDS + 2} = pgmCnt
"remove 0's for blank stage
Fori=0To l
Execute(posEX +1) = -1
dStore(posDS + iy =-1
Next
posIF = posDC
posDC = posDF + 2
posDF = posDF + 3
posEX = posEX + 3
posDS = posDS + 3
If operl Array(pgmCnt) = "M1" Then
AC =Ml
Elself oper! Array(pgmCnt) = "M2" Then
AC=M2
End If
pgmCnt = pgmCnt + |
It DEBUG_PO =1 Then
Cali PrintOutd("M1: ", M1, "M2: ", M2)
End If
Case "ST"
iFetch(poslF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
dStore(posDS + 1) = pgmCnt
dStore(posDS + 2) = pgmCnt
poslF = posDC
posDC = posDF
posDF = posEX
posEX = posDS +2
posDS = posDS + 3
It operl Array(pgmCat) = "M1" Then
M1 =AC
Elself operl Array(pgmCnt) = "M2" Then
M2=AC
End If
If DEBUG_PO =1 Then
Call PrintOut2("Operandl: ", operl Array(pgmCnt))
Call PrintOut4("M1: ", M1, "M2: ", M2)
End If
pgmCnt = pgmCnt + 1
Case "BRA", "BZ"
iFetch(poslF) = pgmCnt
Decode(posDC) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
" put in null char to simulate clearing the pipe
For i =posIF + 1 To posDS - 1
iFetch(i) — -1
Next
For i = posDC + 1 To posDS
Decode(i) = -1
Next
Fori=posDF + 1 To posDS + 1
dFetch(iy = -1
Next

Fori=posEX + 1 To posDS +2
Execute(i) = -1
Next
For 1=posDS + 1 To posDS +3
dStore(i) = -1
Next
' reasign new positions
posIF = posDS
posDC = posDS + 1
posDF = posDS + 2
posEX = posDS + 3
posDS = posDS + 4
If AC =0 Then
Branch = True
Llself comArray(pgmCnt) = "BRA" Then
Branch = True
Else
Branch = False
End If
If DEBUG_PO =1 Then
Call PrintOut4("AC:", AC, "comArray(pgmCnt):", comArray(pgmCnt))
End If
If Branch = True Then
If DEBUG_PO =1 Then
message = "operl Array(pgmCnt) =" & oper! Array(pgmCnt)
MsgBox (message)
End If
If operl Array(pgmCnt) = Null Then
pgmCnt = pgmCnt + 1
Else
"scarch for operand to match location and set pgmCnt to that command count
i=0
finLoop = False
Do While Not finLoop

i=i+1
If DEBUG_PO =1 Then
message ="i:" & i & " pgmCnt="& pgmCnt & Chr(13) _

& "locArray(i) =" & locArray(i) & Chr(13) _
& "operl Array(pgmCnt) =" & operl Array(pgmCnt)
MsgBox (message)
End If
If locArray(i) = operl Array(pgmCnt) Then
pgmCnt =i
finLoop = True
Elself'1=30 Then
finLoop = True
End If
Loop
If Not (pgmCnt = i) Then
pegmCnt = pgmCnt + 1
End If
End If
Else
gmCnt = pgmCnt + 1
End If
Case Else
FinProg = True
End Select

If posDS > 32 Or pgmCnt > 20 Then
FinProg = True
End If
Loop

' fill in the blanks
For i = poslF - 1 To 2 Step -1
If iFetch(i) = 0 Then
iFetch(i) = iFetch(i + 1)
End If
Next

Fori=posDC - | To 3 Step -1
I Decode(i) = 0 Then
Decode(i) = Decode(i + 1)
End It
Next
Fori=posDF - 1 To 4 Step -1
It dFetch(i) = 0 Then
dFetch(i) = dFetch(i + 1)
End If
Next
Fori=postEX -1 To 5 Step -1
If Execute(i) = 0 Then
Execute(i) = Execute(i + 1)
Fnd If
Next
Fori=posDS -1 To 6 Step -1
If dStore(i) = 0 Then
dStore(i) = dStore(i + 1)
End If
Next

' put into table
Set tbIPipe = db.TableDefs("tblPipe")
Set rstPipe = thiPipe.OpenRecordset(dbOpenDynaset)

Fori=1To30
rstPipe. AddNew
rstPipe Fields("Clock™) =1 ' set the clock time
If iFetch(i) > 0 Then
rstPipe Fields("I_Fetch") = iFetch(i)
Else
rstPipe.Fields("l_Fetch") = Null
End If
If Decode(i) > 0 Then
rstPipe.Fields("Decode") = Decode(i)
Else
rstPipe.Fields("Decode") = Null
End If
If dFetch(i) > 0 Then
rstPipe.Fields("D_Fetch") = dFetch(i)
Else
rstPipe.Fields("D_Fetch") = Null
End If
If Execute(i) > 0 Then
rstPipe.Fields("Execute") = Execute(i)
Else
rstPipe Fields("Execute") = Nuli
End If
[f dStore(i) > 0 Then
rstPipe.Fields("D_Store") = dStore(i)
Else
rstPipe Fields("D_Store") = Null
End If
rstPipe. Update
Next
MsgBox ("Pipeline Completed.")
End Sub

Sub PrintQut2(x As Variant, y As Variant)
Dim message As String

message =x & " "&vy
MsgBox (message)
End Sub

Sub PrintQut4(x As Variant, y As Variant, w As Variant, z As Variant)
Dim message As String
message =x & " "&y&Chr(13)&w&" "&z
MsgBox (message)

End Sub

Sub readthrud()
Dim db As Database
Dim tbl As TableDef
" the table that holds the program
Dim tblProg As TableDef
Dim rstProg As Recordset
" the pipe table
Dim tbiPipe As TableDef
Dim rstPipe As Recordset
"array of command line information
Dim locArray(1 To 30) As String
Dim comArray(1 To 30) As String
Dim operl Array(l To 30) As Variant
Dim oper2Array(1 To 30) As Variant
" variables need to keep track of
Dim AC As Integer ' accumulator register
Dim DR As Integer ' data register
Dim M1 As Integer ' memery location 1
Dim M2 As Integer ' memory location 2

' the stages of the pipe
Dim iFetch(l To 40) As Integer
Dim dFetch(l To 40) As Integer
Dim Execute(1 To 40) As Integer
Dim dStore(1 To 40) As Integer
‘the position that each stage is on
Dim poslF As Integer
Dim posDF As Integer
Dim posEX As Integer
Dim posDS As Integer
Dim pgmCnt As Integer
" a holder for the current command
Dim currentCmd As String
"used to exit looking at program loop
Dim FinProg As Boolean
" used to tell when branching is allowed
Dim Branch As Boolean
" dummy variables
Dim finLoop As Boolean
Dim i As Integer
Dim message As String

"initialize all need variables
Set db = CurrentDb
Set tbiProg = db.TableDefs("tbIProgram™")
Ser rstProg = tbIProg.OpenRecordset(dbOpenTable)
' Set rstProg = tbiProg.OpenRecordset(dbOpenDynaset)
AC=0
DR =0
Mi=0
M2 =10
poslF =1
posDF =2
posEX =3
posDS =4
On Error Resume Next
Fori=1To 30
ifetch(i)y =0
dFetch(i) =0
Execute(1) =0
dStore(i) = 0
locArray(i) = Null
comArray(i) = Null
operl Array(i} = Null
oper2Array(i) = Nuli
Next
On Error GoTo 0
FinProg = False

' check file to make sure it is not empty

rstProg. MoveFirst
If rstProg. EOF Then
MsgBox "EQOF error on tblProgram™
Exit Sub
End If
pgmCnt = |
' put commands in command array
Do While Not rstProg. EOF
On Error Resume Next
locArray(pgmCnt) = rstProg.Fields("Location")
comArray(pgmCnt) = rstProg.Fields("Command™)
operl Array(pgmCnt) = rstProg.Fields("Operand1")
oper2Array(pgmCnt) = rstProg.Fields("Operand2")
On Error GoTo 0
pgmCnt = pgmCnt + 1
rstProg. MoveNext
' message = "The assignment loop - comArray: " & comArray(pgmCnt) & Chr(13) _
& "Location: " & locArray(pgmCnt) & Chr(13) & "Operandl: " & _
oper] Array(pgmCnt)
' MsgBox (message)
Loop

* loop through commands until end of program or 30 clks have ellapsed
gmCnt = 1
Do While Not FinProg
' message = "The programming loop - comArray: " & comArray(pgmCnt)
' MsgBox (message)
currentCmd = comArray(pgmCnt)
' Call PrintQut2("CurrentCmd:", currentCmd)
Select Case currentCmd
Case "ADD"
iFetch(poslF) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posiF = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
pgmCnt =pgmCnt + 1
" Call PrintOut4("AC:", AC, "DR:", DR)
AC=AC+DR
Case "SUB"
iFetch(pos!F) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posIF = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
pegmCnt = pgmCnt + |
' Call PrintOut4("AC:". AC, "DR:", DR)
AC=AC-DR
Case "MVI"
iFetch(posIF) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
posIF = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
" Call PrintOutd("Operl:", operl Array(pgmCnt), "Oper2:", oper2 Array(pgmCnt))
If operl Array(pgmCnt) = "AC" Then
AC = oper2 Array(pgmCnt)
Elself oper] Array(pgmCnt) = "DR" Then
DR = oper2 Array(pgmCnt)
End If
' Call PrintOut4("AC:", AC, "DR:", DR)

pemCnt = pgmCnt + 1
Case "MOV"
iFetch(pos!IF) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
poslF = posDF
posDF = posEX
posEX = posDS
posDS = posDS + 1
If oper! Array(pgmCnt) = "DR" Then
DR =AC
Elself operl Array(pgmCnt) = "AC" Then
AC=DR
End If
' Call PrintOut4("AC:", AC, "DR:", DR)
pemCnt = pgmCnt + 1
Case "LD"
iFetch(posiF) = pgmCnt
dFetch(posDF) = pgmCnt
dFetch(posDF + 1) = pgmCnt
dFetch(posDF + 2) = pgmCnt
Execute(posEX + 2) = pgmCnt
dStore(posDS + 2) = pgmCnt
' remove 0's for blank stage
Fori=0To |
Execute(posEX + i) = -1
dStore(posDS + i) = -1
Next
posiF = posDF + 2
posDF = posDF + 3
posEX = posEX + 3
posDS = posDS + 3
If operl Array(pgmCnt) = "M1" Then
AC =MI
Elself operl Array(pgmCnt) = "M2" Then
AC=M2
End If
pgmCnt = pgmCnt + |
Case "ST"
iFetch(poslF) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
dStore(posDS + 1) = pgmCnt
dStore(posDS + 2) = pgmCnt
posIF = posDF
posDF = posEX
posEX = posDS +2
posDS = posDS + 3
If operl Array(pgmCnt) = "M1" Then
M1 =AC
Elself oper] Array(pgmCnt) = "M2" Then
M2=AC
End if
gmCnt = pgmCnt + 1
Case "BRA", "BZ"
iFetch(pos!F) = pgmCnt
dFetch(posDF) = pgmCnt
Execute(posEX) = pgmCnt
dStore(posDS) = pgmCnt
' put in null char to simulate clearing the pipe
For i =posIF + I To posDS - 1
iFetch(i) = -1
Next
For i = posDF + 1 To posDS + 1
dFetch(i) = -1
Next
Fori=posEX + 1 To posDS + 2
Execute(i) = -1

Next
Fori=posDS + 1 To posDS + 3
dStore(i) = -1
Next
' reasign new positions
poslF = posDS
posDF = posDS + |
posEX =posDS +2
posDS = posDS + 3
If AC =0 Then
Branch = True
Elself comArray(pgmCnt) = "BRA" Then
Branch = True
Else
Branch = False
End If
' Call PrintOutd("AC:", AC, "comArray(pgmCnt):", comArray(pgmCnt))
If Branch = True Then
' message = "operl Array(pgmCnt) =" & operlArray(pgmCnt)
' MsgBox (message)
If oper] Array(pgmCnt) = Null Then
pgmCnt = pgmCnt + 1
Else
" search for operand to match location and set pgmChnt to that command count
i=0
finLoop = False
Do While Not finLoop
=i+l
' message="i:"&i1&" pgmCnt="~& pgmCnt & Chr(13) _
& "locArray(i) =" & locArray(i) & Chr(13) _
& "operl Array(pgmCnt) =" & operl Array(pgmCnt)
' MsgBox (message)
If locArray(i) = oper] Array(pgmCnt) Then
pemCnt =i
finLoop = True
Efsclf 1 =30 Then
finLoop = True
End If
Loop
If Not (pgmCnt = i) Then
pgmCnt = pgmCnt + 1
End If
End If
Else
pgmCnt = pgmCnt + 1
End If
Case Else
FinProg = True
End Select

1f posDS > 32 Or pgmChnt > 20 Then
FinProg = True
End If
Loop

' fill in the blanks
Fori=poslF -1 To 2 Step -!
It iFetch(i) = 0 Then
iFetch(i) = iFetch(i + 1)
End If
Next
Fori=posDF -1 To 4 Step -1
Ir dFeteh(i) = 0 Then
dFetch(i) = dFetch(i + 1)
End If
Nexl
Fori=posEX - | To 5 Step -1
It Execute(i) = 0 Then
Execute(1) = Execute(i + 1)
End If

Next
Fori=posDS - 1 To 6 Step -1
I dStore(s) = 0 Then
dStore(i) = dStore(i + 1)
End If
Next

' put into table
Set th1Pipe = db.TableDefs("tbIPipe4")
Set rstPipe = thiPipe OpenRecordset(dbOpenDynaset)

Fori=1To30
rstPipe. AddNew
rstPipe Fields("Clock") =i 'set the clock time
It iFetch(i) > 0 Then
rstPipe.Fields("l_Fetch") = iFetch(i)
Else
rstPipe Fields("I_Fetch") = Null
End If
I dFetch(i) > 0 Then
rstPipe. Fields("D_Fetch") = dFetch(i)
Else
rstPipe.Fields("D_Fetch") = Null
End If
I Execute(i) > 0 Then
rstPipe. Fields("Execute") = Execute(i)
Else
rstPipe.Fields("Execute") = Null
End If
£ dStore(i) > 0 Then
rstPipe.Fields("D_Store") = dStore(i)
Else
rstPipe. Fields("D_Store") = Null
End If
rstPipe. Update
Next
MsgBox ("Pipeline Completed.")

End Sub
Private Sub Command24_Click()
On Error GoTo Err_Command24_Click

Dim stDocName As String
Dim stLinkCriteria As String

stDocName = "frmPipe4”
DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_Command24_Click:
Exit Sub

Err_Command24_Click:
MsgBox Err.Description
Resume Exit_ Command24_Click

End Sub
Private Sub Command25_Click()
On Error GoTo Err_Command25_Click

Dim stDocName As String

stDocName = "qryDelPipe”
DoCmd.OpenQuery stDocName, acNormal, acEdit

Exit_Command25_Click:
Exit Sub

Err_Command25_Click:
MsgBox Err.Description
Resume Exit_Command25_Click

End Sub

Private Sub Command27_Click()
On Error GoTo Err_Command27_Click

Dim stDocName As String
Dim stLinkCriteria As String

DoCmd.Close

stDocName = "frmlIntrol”
DoCmd.OpenForm stDocName, . , stLinkCriteria

Exit_Command27_Click:
Exit Sub

Err_Command27_Click:
MsgBox Err.Description
Resume Exit_Command27_Click

End Sub

